25 research outputs found

    Designing AfriCultuReS services to support food security in Africa

    Get PDF
    ABSTRACT: Earth observation (EO) data are increasingly being used to monitor vegetation and detect plant growth anomalies due to water stress, drought, or pests, as well as to monitor water availability, weather conditions, disaster risks, land use/land cover changes and to evaluate soil degradation. Satellite data are provided regularly by worldwide organizations, covering a wide variety of spatial, temporal and spectral characteristics. In addition, weather, climate and crop growth models provide early estimates of the expected weather and climatic patterns and yield, which can be improved by fusion with EO data. The AfriCultuReS project is capitalizing on the above to contribute towards an integrated agricultural monitoring and early warning system for Africa, supporting decision making in the field of food security. The aim of this article is to present the design of EO services within the project, and how they will support food security in Africa. The services designed cover the users' requirements related to climate, drought, land, livestock, crops, water, and weather. For each category of services, results from one case study are presented. The services will be distributed to the stakeholders and are expected to provide a continuous monitoring framework for early and accurate assessment of factors affecting food security in Africa.This paper is part of the AfriCultuReS project "Enhancing Food Security in African Agricultural Systems with the Support of Remote Sensing", which received funding from the European Union's Horizon 2020 Research and Innovation Framework Programme under grant agreement No. 77465

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    Designing AfriCultuReS services to support food security in Africa

    No full text
    Earth Observation (EO) data are increasingly being used to monitor vegetation and detect plant growth anomalies due to water stress, drought, or pests, as well as to monitor water availability, weather conditions, disaster risks, land-use/land-cover changes and to evaluate soil degradation. Satellite data are provided regularly by worldwide organizations, covering a wide variety of spatial, temporal and spectral characteristics. In addition, climate and crop growth models provide early estimates of the expected weather patterns and yield, which can be improved by fusion with EO data. The project “AfriCultuReS” is capitalizing on the above to contribute towards an integrated agricultural monitoring and early warning system for Africa, supporting decision making in the field of food security. The aim of this paper is to present the design of EO services within the project, and how they will support food security in Africa. The designed services cover the users' requirements related to climate, drought, land, livestock, crops, water, and weather. For each category of services, results from one case study are presented. The services will be distributed to the stakeholders and are expected to provide a continuous monitoring framework for early and accurate assessment of factors affecting food security in Africa
    corecore